In-beam gamma-ray spectroscopy of ¹³⁴Sm

P. Sekrecka¹, A. Malinowski^{1,2}, M. Palacz¹, A. Fijałkowska², G. Jaworski¹, I. Kuti³, and B. Saygi⁴

¹Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland

²Faculty of Physics, University of Warsaw, Warsaw, Poland

³HUN-REN Institute for Nuclear Research (HUN-REN ATOMKI), Debrecen, Hungary and

⁴Ankara University, Institute of Nuclear Sciences, Ankara, Turkey

An experiment to study the $^{134}\mathrm{Sm}$ nucleus was carried out in January 2024 at the Heavy Ion Laboratory, University of Warsaw, using the EAGLE [1] gamma spectrometer in conjunction with NEDA [2,3] neutron and DIAMANT [4,5] charged particle detectors. The main objective of the experiment is to extend the level scheme of $^{134}\mathrm{Sm}$ to study shape coexistence and gamma vibrational states. In addition, the experiment should explore possible shape differences of $^{134}\mathrm{Sm}$ compared to other Sm isotopes, namely $^{136}\mathrm{Sm}$ [6] and $^{138}\mathrm{Sm}$ [7], arising from the arrangement of protons and neutrons in the $h_{11/2}$ orbitals. Only six yrast excited states of $^{134}\mathrm{Sm}$ are currently known, forming a ground state band with spins and parity up to 12^+ [8].

A 147 MeV beam of ³²S was used to bombard an isotopically pure ¹⁰⁶Cd target with a thickness of 4.6 mg/cm². In this reaction, two protons and two neutrons should be emitted from the compound nucleus ¹³⁸Gd to form ¹³⁴Sm. However, the reaction is dominated by the emission of protons, possibly accompanied by one neutron and/or an alpha particle. The NEDA and DIAMANT arrays are essential to select events of interest. Data analysis is in progress. Preliminary results will be presented.

- [1] J. Mierzejewski et al., NIM A 659 (2011) 84
- [2] J. J. Valiente-Dobón et al., NIM A **927** (2019) 81
- [3] G. Jaworski et al., Acta Phys. Pol. B Proceedings Supplement 17 (2024) 3-A12
- [4] J. Sheurer et al., NIM A **385** (1997) 501
- [5] I. Kuti et al., Acta Phys. Pol. B Proceedings Supplement 17 (2024) 3-A13
- [6] E. S. Paul *et al.*, Journal of Physics G **19** (1993) 861
- [7] E. S. Paul et al., Journal of Physics G 20 (1994) 1405
- [8] M. Ishii et al., Amer. Chem. Soc. Symposium **324** (1986) 496